Assessing and forecasting droughts in eThekwini municipality: SPI, SPEI, and Time Series Insights for Sustainable Resource Management

Authors

  • Ntokozo Xaba Faculty of Applied Science, Durban University of Technology, South Africa https://orcid.org/0000-0002-1446-9024
  • Nirmala Deenadayalu Durban University of Technology, South Africa

DOI:

https://doi.org/10.36096/ijbes.v7i4.869

Keywords:

Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Meteorological Drought, SARIMA.

Abstract

The eThekwini Municipality, South Africa, has experienced increased drought frequency and intensity due to climate change and the El Niño-Southern Oscillation (ENSO). This study assesses and forecasts meteorological, agricultural, and hydrological droughts using the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and ARIMA/SARIMA models, analyzing climate data from 1990 to 2022. Results reveal significant drought intensification, with extreme events in 2019 (central region, SPEI-6 = -3.42) and 2020 (northern region, SPI-3 = -8.15). SARIMA models outperformed ARIMA in forecasting accuracy, emphasizing the role of seasonality. Urbanization and land-use changes exacerbate central region droughts, while northern agricultural reliance highlights the need for water storage. Recommendations include drought-resistant crops, enhanced irrigation, and rainwater harvesting to bolster resilience. These findings inform localized drought management and contribute to global climate adaptation strategies.

Downloads

Download data is not yet available.

References

Abu Arra, A., & ?i?man, E. (2024). A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation. Environmental Monitoring and Assessment, 196, Article 980. https://doi.org/10.1007/s10661-024-13127-7 DOI: https://doi.org/10.1007/s10661-024-13127-7

Ali, S., Basit, A., Umair, M., & Ni, J. (2024). Impacts of climate and land coverage changes. International Journal of Climatology.

Anekwe, I. M. S., Zhou, H., Mkhize, M. M., & Akpasi, S. O. (2023). Effects of climate change on agricultural production in South Africa. The International Journal of Climate Change: Impacts and Responses, 15(2). https://doi.org/10.18848/1835-7156/CGP/v15i02/89-114 DOI: https://doi.org/10.18848/1835-7156/CGP/v15i02/89-114

Bazrafshan, J., Hejabi, S., & Karami, H. (2015). Predicting droughts with SARIMA model in arid and semi-arid regions. Journal of Environmental Management, 148, 113–122.

Benevolenza, M. A., & DeRigne, L. (2018). The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. Journal of Human Behavior in the Social Environment, 29, 266–281. DOI: https://doi.org/10.1080/10911359.2018.1527739

Byakatonda, J., Parida, B., Moalafhi, D., & Kenabatho, P. (2018). Analysis of long-term drought severity characteristics. Atmospheric Research. DOI: https://doi.org/10.1016/j.atmosres.2018.07.002

Cheng, L., Hoerling, M., Aghakouchak, A., Livneh, B., Quan, X., & Eischeid, J. (2015). How has human-induced climate change affected California drought risk? Journal of Climate, 29, 111–120. DOI: https://doi.org/10.1175/JCLI-D-15-0260.1

Choat, B., Jansen, S., Brodribb, T., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S., Feild, T., Gleason, S., Hacke, U., Jacobsen, A., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P., Nardini, A., Pittermann, J., Pratt, R., Sperry, J., Westoby, M., Wright, I., & Zanne, A. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752–755. DOI: https://doi.org/10.1038/nature11688

Cook, B. I., Ault, T. R., & Smerdon, J. E. (2018). Unprecedented 21st century drought risk in the American Southwest and Central Plains. Earth’s Future, 6(9), 1033–1050. https://doi.org/10.1029/2018EF000825 DOI: https://doi.org/10.1029/2018EF000825

Engelbrecht, F. A., Steinkopf, J., Padavatan, J., & Midgley, G. F. (2024). Projections of future climate change in Southern Africa and the potential for regional tipping points. In G. P. von Maltitz et al. (Eds.), Sustainability of Southern African ecosystems under global change (Ecological Studies 248, pp. 169–190). Springer. https://doi.org/10.1007/978-3-031-10948-5_7 DOI: https://doi.org/10.1007/978-3-031-10948-5_7

Gemeda, D. O., Getahun, A., & Chanie, T. (2022). Drought early warning using SPEI and SARIMA models: A case study in Ethiopia. Journal of Hydrology: Regional Studies, 41, 101059. DOI: https://doi.org/10.1016/j.ejrh.2022.101059

Gemeda, D. O., Korecha, D., & Garedew, W. (2022). Monitoring climate extremes using standardized evapotranspiration index and future projection of rainfall and temperature in the wettest parts of southwest Ethiopia. Environmental Challenges. DOI: https://doi.org/10.1016/j.envc.2022.100517

Ghosh, A. K., Shapiro, M., & Abramson, D. (2022). Closing the knowledge gap in the long-term health effects of natural disasters. International Journal of Environmental Research and Public Health. DOI: https://doi.org/10.3390/ijerph192215365

Gonzalez-Orozco, A. M., Greve, M., & Lötter, M. C. (2020). Predicting vulnerability to drought in subtropical regions using SPEI: The case of eThekwini Municipality. Climate Risk Management, 27, 100212. DOI: https://doi.org/10.1016/j.crm.2020.100212

IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896 DOI: https://doi.org/10.1017/9781009157896

Islam, S. (2020). Integrating disaster risk reduction and climate change adaptation in Bangladesh: A political economy perspective. DOI: https://doi.org/10.1016/j.ijdrr.2020.101540

Lyon, B., & Barnston, A. G. (2005). ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. Journal of Climate, 18(23), 5095–5109. https://doi.org/10.1175/JCLI3598.1 DOI: https://doi.org/10.1175/JCLI3598.1

Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9), 3635–3649. https://doi.org/10.5194/hess-18-3635-2014 DOI: https://doi.org/10.5194/hess-18-3635-2014

Mathivha, F., Sigauke, C., Chikoore, H., & Odiyo, J. (2020). Short-term and medium-term drought forecasting using generalized additive models. Sustainability, 12(10), 4006. DOI: https://doi.org/10.3390/su12104006

Moreira, F., Ferreira, J., et al. (2018). Climate change impacts on drought and health: A review of the global evidence. Environmental Monitoring and Assessment, 190(5), 314. https://doi.org/10.1007/s10661-018-6640-3

Mukheibir, P., & Sparks, D. (2003). Climate variability, climate change and water resource strategies for small municipalities. Water SA, 31(1), 113–120.

Ndlovu, M., Clulow, A. D., Savage, M. J., Nhamo, L., Magidi, J., & Mabhaudhi, T. (2021). An assessment of the impacts of climate variability and change in KwaZulu-Natal Province, South Africa. Atmosphere, 12(4), 427. https://doi.org/10.3390/atmos12040427 DOI: https://doi.org/10.3390/atmos12040427

Ngcamu, B. S. (2019). A systematic review of droughts and their impact on food security in Africa. Journal of Disaster Risk Studies, 11(1), a722. https://doi.org/10.1080/03736245.2019.1658914

Nicholson, S. E., Funk, C., & Fink, A. H. (2018). Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 DOI: https://doi.org/10.1016/j.gloplacha.2017.12.014

Orimoloye, I., Ololade, O., Mazinyo, S., Kalumba, A. M., Ekundayo, O. Y., & Busayo, E. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon. DOI: https://doi.org/10.1016/j.heliyon.2019.e02148

Potop, V., Boroneant, C., Mozny, M., & Soukup, J. (2014). Drought evolution at various timescales in the Czech Republic during the growing season. International Journal of Climatology, 34(1), 1022–1034.

Rouault, M., & Richard, Y. (2003). Intensity and spatial extension of droughts in South Africa at different time scales. Water SA, 29(4), 489–500. https://doi.org/10.4314/wsa.v29i4.5057 DOI: https://doi.org/10.4314/wsa.v29i4.5057

Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., & Wilby, R. L. (2014). Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 511(7508), 133–136. https://doi.org/10.1038/nature13319 DOI: https://doi.org/10.1038/nature13319

Shah, A., Ye, J., Shaw, R., Ullah, R., & Ali, M. (2020). Factors affecting flood-induced household vulnerability and health risks in Pakistan. International Journal of Disaster Risk Reduction. DOI: https://doi.org/10.1016/j.ijdrr.2019.101341

Singh, G. R., Dhanya, C., & Chakravorty, A. (2020). Investigating the divergence between SPI and SPEI.

Spinoni, J., Naumann, G., Vogt, J., & Barbosa, P. (2015). European drought climatologies and trends based on a multi-indicator approach. Global and Planetary Change, 127, 50–57. DOI: https://doi.org/10.1016/j.gloplacha.2015.01.012

Tirivarombo, S., Mashonjowa, E., & Munjoma, G. (2018). Evaluation of agricultural drought using SPEI and SARIMA models in Southern Africa. Theoretical and Applied Climatology, 131, 389–399.

Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. Nature Climate Change, 5, 725–730. https://doi.org/10.1038/nclimate2657 DOI: https://doi.org/10.1038/nclimate2657

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Climatic Change, 110(4), 839–855. https://doi.org/10.1007/s10584-010-9841-5

Vogel, C., & O’Brien, K. (2006). Who can eat information? Examining the effectiveness of seasonal climate forecasts and regional climate-risk management strategies. Climate Research, 33(1), 111–122. https://doi.org/10.3354/cr033111 DOI: https://doi.org/10.3354/cr033111

Wang, Z., Ding, Y., & Liu, Z. (2021). Predicting agricultural drought with a multi-scalar drought index: Evidence from Northern China. Agricultural Water Management, 246, 106693.

Ward, P. S., & Shively, G. (2017). Disaster risk, social vulnerability, and economic development. Disasters, 41(2), 324–351. DOI: https://doi.org/10.1111/disa.12199

Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. DOI: https://doi.org/10.1016/j.wace.2014.01.002

Wolski, P., Todd, M. C., Murray-Hudson, M., & Tadross, M. (2018). Multi-decadal variability of droughts and wet periods in Southern Africa: Impacts and implications. Hydrology and Earth System Sciences, 22(5), 2839–2856. https://doi.org/10.5194/hess-22-2839-2018 DOI: https://doi.org/10.5194/hess-22-2839-2018

Yeh, W. Y., & Hsu, C. W. (2019). Application of SARIMA and ARIMA models in drought prediction: A case study in Taiwan. Journal of Hydrology, 573, 1093–1105.

Yu, M., Li, Q., Hayes, M., Svoboda, M., & Heim, R. (2011). Are droughts becoming more frequent or severe in China? International Journal of Climatology.

Ziari, A., & Medjerab, A. (2024). Impact of drought in Northeastern Algeria. Revista de Gestão Social e Ambiental. DOI: https://doi.org/10.24857/rgsa.v18n9-078

Ziervogel, G., New, M., & Archer van Garderen, E. (2019). Climate change impacts and adaptation in South Africa. Wiley Interdisciplinary Reviews: Climate Change, 10(4), e590.

Downloads

Published

2025-08-13

How to Cite

Xaba, N., & Deenadayalu , N. (2025). Assessing and forecasting droughts in eThekwini municipality: SPI, SPEI, and Time Series Insights for Sustainable Resource Management. International Journal of Business Ecosystem & Strategy (2687-2293), 7(4), 253–269. https://doi.org/10.36096/ijbes.v7i4.869

Issue

Section

Interdisciplinary Studies in Humanities and Social Sciences